

DAMA-CHICAGO, JUNE 15,2016

<u>Predictive Analytics:</u> <u>A Statistical Primer for Data Modelers</u>

Presenter: Bob Conway Information Engineering Associates <u>Bob.Conway@InfoEngAssc.com</u> 303–885–4811

Copyright 2014© Information Engineering Associates. All Rights Reserved.

θł

Descriptive Analytics – What has happened?

Trends, patterns, exceptions in historic data Monitor/Control, business process improvement

Predictive Analytics – What will happen?

Advanced statistics → mathematical models Forecast future state/behavior

Best Fit: minimizes variance between predicted values and observed values

Simple Correlation

Correlation Coefficient, $r=s_{xy}/s_xs_y$ -1<= r <=+1 Correlation =/=> Cause and Effect 0<= r^2 <=+1 r^2 ==> fraction of Y variance attributable to X

θł

 \rightarrow

Partial Correlation

Original Correlation Matrix

<u>Variable</u>	<u>Sales</u>	<u>Income</u>	<u>Age</u>	<u>Cars</u>
<u>Sales</u>	1.0	0.8	0.6	0.3
<u>Income</u>		1.0	0.7	0.4
<u>Age</u>			1.0	0.3
<u>Cars</u>				1.0

Stepwise (Partial) Correlation Matrix

θł

<u>Variable</u>	<u>Sales</u>	<u>Income</u>	Age*	<u>Cars*</u>
Sales	1.0	0.79	-0.48	0.09
<u>Income</u>		1.0		
Age			1.0	
Cars				1.0

Mercedes Sales = a' + b'(HH Income) - c'(Age)

Does the mathematical model make business sense?

Getting Started Suggestions

- 1. Bone up on statistics/predictive modeling
 - www.coursera.org free, online classes
 - Books "Predictive Analytics" by Conrad Carlberg
 - Leverage in-house methods/tools expertise
- 2. Engage a user-partner/business problem
 - Evaluate current forecast process and impact
 - Explore the data metrics, sensitivity variables
 - Prototype a model test it against actual data
- 3. Estimate business impact (\$) what if scenarios, precasting
- 4. Get started with simple tools (Excel with advance stat plug-ins)
- 5. Parallel trials with current process and proposed predictive model
 - Continuous monitoring and refinement

 \rightarrow

Ol